Join Now

Technical Committee Fuel Oils

Deposit formation by 20 % (V/V) FAME fuels in premix burner systems

In the domestic heating market the development and use of fuels with an increasing share of biogenic or alternative fuels is propagated. Due to the fact, that modern fuel oil burner feature a complex carburation techniques and combustion, changes on the fuel properties and composition can lead to increased emissions or deposit formation therein. Furthermore, the different fuel properties may result in decreased storage stability, which has to be evaluated before introducing them into the market. The scope of the project was to investigate the performance of low-sulfur domestic heating oil (DHO) with up to 20 % v/v FAME on the storage stability and on the use in oil-fired heating systems. The project was split into two major parts. The first part covered a two-year storage of the fuels including sampling and analysis of the fuels every half year. The analysis was conducted according to DIN 51603-1 for the pure DHO and according to DIN SPEC 51603-6 for the blends. It has been shown, that low sulphur domestic heating oil with up to 20 % (V/V) of FAME after two years of storage fits the parameter of the corresponding standards. Furthermore, a new testing method, called “DGMK-714” derived from the PetroOxy-test (EN 16091) has been defined. With this method for the determination of oxidation stability the fuels can be characterized being comparable to the standardized testing methods of modified Rancimat or PetroOxy. The higher sample volume of the method allows further analysis of the fuel sample after testing for characterization of the fuels. The second part of the project investigated the deposit formation tendencies of the fuels in an idealized testing apparatus and in three different kinds of oil burners. Using the idealized testing apparatus proved an increased tendency of deposit formation during evaporation for an increasing FAME content. However, this tendency could not be observed in the three commercial oil-fired heating systems. A precise fuel specific failure could not be observed. Hence the results of this project sustain the future introduction of bio heating oil with a content of FAME of up to 20 % v/v.

The IGF project (16129 N) of the Research Association for Petroleum, Natural Gas and Coal was funded by the Federal Ministry of Economics and Technology via the AiF within the framework of the programme for the promotion of joint industrial research and development (IGF) on the basis of a resolution of the German Bundestag.

Christian Jaschinski, Oliver van Rheinberg
Softcover ISBN
Book Series ISSN
Number of Pages
Number of Pictures
Number of Tables