High Throughput Testing of Catalysts with Fast Deactivation for Methanol-toHydrocarbons (MTH)

M. Kirchmann, C. Hauber, A. Haas
hte GmbH, Heidelberg, Germany

Abstract

In this article we will focus on the Methanol-to-Hydrocarbons (MTH) reaction that has been thoroughly investigated with current state-of-the-art catalyst SAPO-34. This process represents a challenging application for parallel testing of catalysts which was met by appropriate test protocols and an advanced analytical setup to detect complex multicomponent products in connection with a fully automated data evaluation.

Results and Discussion

The evolution and distribution of products on SAPO-34 was studied in a fixed-bed reactor at different severities ranging from $0.2-20 \mathrm{~h}^{-1}$. Thereby, the timescale of deactivation at low severities smaller $1 \mathrm{~h}^{-1}$ is slow enough for online GC to give detailed information on changes of the product distribution and the reaction network. However, at higher and commercially relevant severities $>1 \mathrm{~h}^{-1}$ the timescale of deactivation becomes too fast to be adequately followed by online GC. To follow the rapidly changing reaction products, FTIR spectroscopy in the gas-phase was applied in measurement intervals down to 5 s . Multivariate analysis of the FTIR spectra and correlation to the online product analysis by GC was used for in-situ training of chemometrical models for all major products between C1-C5. These models were used for the prediction of product yields from the FTIR spectra in high time resolution.

Conclusions

The application of FTIR and chemometrics allowed for a high-resolution time-on-stream dependent product analysis of induction, steady-state and deactivation of the catalyst under commercially relevant conditions.

Figure 1. Data evaluation workflow from FTIR spectra (left) to chemometrical interpretation (middle) to regression of design of experiments DoE (right).

