Model-based Examination of an Optimal Use of Carbon-based Energy Carriers in an Integrated Steel Mill through Integration of a Direct Reduction Plant

N. Müller, G. Herz, E. Reichelt, M. Jahn Fraunhofer IKTS, Dresden

Abstract

In the context of the special report of IPCC to global warming from 2018, feasibility and impact of a limitation of global warming by 1.5 °C were examined. Compared with the 2 °C target, it should have significant advantages regarding climate change. Therefore, extensive efforts have to be made not only in the energy sector, but also in the industrial sector. With a share of 8 % on global energy-related CO_2 emissions, the steel industry is one of the large emitters in the industrial sector. Facing increasing prices of CO_2 certificates, different measures to lower CO_2 emissions are considered.

One possibility is a co-feed of direct reduced iron (DRI) from a natural-gas-based direct reduction plant (DRP) and iron ore in existing integrated steel mills. For this process concept, DRI is fed to the blast furnace as a pre-reduced iron carrier. As a result the coal consumption of the blast furnace decreases. The use of DRI in integrated steel mills therefore results in a substitution of coal by natural gas. Based on the development of process models for all major process steps, a detailed process model of an integrated steel mill including a DRP was devised. The optimal material and energetic use of carbon-based energy carriers targeting a low carbon steel production was examined.

As the primary reduction agents in a DRP are hydrogen and carbon monoxide a co-feed of hydrogen into the DRP as a means of reducing CO_2 emissions has been discussed in the literature. Therefore in a further step the opportunity of a hydrogen-based direct reduction process was considered.

The investigations showed that the integration of a natural-gas-based DRP allows a mitigation of over 10 % of CO_2 emissions. Furthermore it could be shown that a hydrogen co-feed of up to 35 % of the reduction energy allows for a further reduction in CO_2 emissions by more than 3 %. With a further increase in the hydrogen fraction the potential for emission reduction is limited due to a decrease of carbon amount in the DRI.