Development and Enhancement of Iron-Based Catalysts to Boost the Conversion of CO₂ via Fischer-Tropsch-Synthesis

F. Mai, A. Jess Universität Bayreuth

Abstract

Major challenges for climate change are the sustainable production of liquid fuels from renewable resources. One option is the use of CO_2 from various sources (power plants, chemical industry, and potentially separated from air) and the subsequent conversion with renewable hydrogen to higher hydrocarbons (HCs). For the activation and conversion of CO_2 into higher hydrocarbons (HCs), conventional power-to-liquid (PTL) plants may be used. But current PTL-systems include a two-stage system at which in the first step, CO_2 and H_2 are converted into CO and H_2O by the reverse-water-gas-shift reaction (RWGS). Only subsequently, higher HCs are synthesized via Fischer-Tropsch-synthesis (FTS).

At moderate temperatures (about 220 °C) the conversion of CO_2 is limited to 10 to 20 % by the endothermic RWGS reaction by thermodynamic limitations, depending on the H_2/CO_2 -ratio. Since the FTS reaction is strongly exothermic and may substantially convert CO from the RWGS reaction, higher conversions of CO_2 are in principle possible. A suitable catalyst should therefore have reaction rates high enough for RWGS and an even higher rate for the FTS reaction. Furthermore, the catalyst should in general also have a low selectivity to methane.

Many studies have shown that one potential way to directly convert CO_2 with H_2 to higher HCs is by the use of iron-based catalysts. These catalysts contain different active sites (iron oxides + iron carbides) which perform the two catalytic reactions (RWGS+FTS) simultaneously. The FTS reaction takes place on the iron carbides and leads to the formation of a variety of hydrocarbons following the Anderson-Schulz-Flory distribution (ASF).

In this study, iron-based sinter-catalysts were investigated for their activity and selectivity to higher hydrocarbons. The catalysts were tested under Fischer-Tropsch conditions (T = 220 °C, p = 20 bar, $H_2/CO_2 = 2$). The results showed that iron-sintered catalysts are potentially able to convert CO₂ at moderate reaction conditions to higher hydrocarbons with still a low selectivity to methane. Further studies on the modification of the catalyst composition as well as the variation of the H_2/CO_2 -ratios showed that the effectiveness of iron-sintered catalysts can be selectively enhanced by the appropriate choice of promoters and reaction conditions.