Directly Coupled Production of Methanol and Formaldehyde Based on CO2

P. Münzer, U. Arnold, J. Sauer Karlsruhe Institute of Technology (KIT), Institute of Catalysis Research and Technology (IKFT), Eggenstein-Leopoldshafen

Abstract

In order to enable the implementation of a circular economy, the use of CO_2 as chemical feedstock is inevitable. Key element of this endeavor is H₂, which is needed for a number of CO_2 -based processes. Since the utilized H₂ should preferably be generated sustainably, e.g. via electrolysis, the correlated production costs of CO_2 -based products are estimated to be much higher than those of their fossil equivalents. Hence, it is essential to optimize not only H₂-production technologies but also the subsequent process chains to maximize overall H₂-efficiency. This goal then leads to the necessity to modify established industrial processes so that any arising H₂-rich waste gas streams that are currently only thermally exploited may be used for chemical syntheses instead.

One example of an industrial process, which releases a H_2 -rich flue gas, is the silver catalyzed oxidative dehydrogenation of methanol (CH₃OH) for the production of formaldehyde (CH₂O). Considering that the manufacture of CH₃OH itself requires a large amount of H₂, especially when CO₂ is deployed as carbon source, it is reasonable to recycle H₂ that is released during CH₂O production to the preceding CH₃OH synthesis.

This study therefore focuses on the concept of the directly coupled production of CH₃OH and CH₂O based on CO₂. The direct connection of the two processes is realized by returning the waste gas of CH₂O production to the feed stream of CH₃OH manufacture. For that purpose, the silver catalyst process has to be modified, so that the N₂ introduced to the system along with atmospheric O₂ is eliminated and cannot accumulate. Thus, it is suggested to substitute N₂ with CO₂, which can easily be fed to the input stream of CH₃OH production together with H₂. This is of particular interest when considering the CO₂-based synthesis route. The schematic flow diagram of the directly coupled processes is shown in Fig.1.

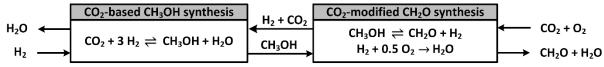


Fig.1: Schematic flow diagram of the directly coupled production of CH₃OH and CH₂O.

In a detailed evaluation of the concept it is shown that directly coupling the manufacture of CH_3OH and CH_2O does not only lead to an increase in overall H_2 -efficiency and CO_2 conversion but also results in a reduction of the related CO_2 abatement costs of the process chain. In addition, experimental investigations of the modified silver catalyst process will be discussed.