Photocatalytic Approaches to Circular Economy: CO₂ Photoreduction to Regenerated Fuels and Chemicals and H₂ Production from Wastewater

I. Rossetti*, G. Ramis**

*Chemical Plants and Industrial Chemistry Group, Dip. Chimica, Università degli Studi di Milano, CNR-ISTM and ISTM Unit Milano-Università, Milano, Italy

**Dip. Ing. Chimica, Civile ed Ambientale, Università degli Studi di Genova, Genoa, Italy

Abstract

The photoreduction of CO_2 is an unconventional process to regenerate fuels and chemicals storing solar radiation. A new photoreactor has been designed recently to achieve high productivity during the process, i.e. up to 16 mol/h kg_{cat} of HCOOH or 1.4 mol/h kg_{cat} of CH₃OH, which are unprecedented results with respect to literature, especially with a very simple commercial catalyst.

The production of hydrogen through photoreforming of aqueous solutions of organic compounds is also considered as a way to exploit solar energy storage in the form of hydrogen. Different sugars were selected as substrates derived from the hydrolysis of biomass or from wastewater (food or paper industry). A significant amount of H_2 was obtained with very simple catalyst formulations, e.g. 20 mol kg_{cat}^{-1} h⁻¹ were obtained at 4 bar, 80 °C over commercial TiO_2 samples and using glucose as substrate. This result is very remarkable with respect to similar research in conventional photoreactors.

Both the routes represent a circular way to regenerate valuable products from gaseous or liquid wastes. Our attention was predominantly focused on the development of innovative reactors, possibly operating under unconventional conditions, with fine tuning of the operation parameters. Reactor modelling is also in progress, including the optimization of radiation distribution in the photoreactor to achieve suitable models for reactor scale up.

Acknowledgements

The authors are grateful to MIUR (project: HERCULES - Heterogeneous robust catalysts to upgrade low value biomass streams) for financial support.